36 research outputs found

    A Formal Study of the Privacy Concerns in Biometric-Based Remote Authentication Schemes

    Get PDF
    With their increasing popularity in cryptosystems, biometrics have attracted more and more attention from the information security community. However, how to handle the relevant privacy concerns remains to be troublesome. In this paper, we propose a novel security model to formalize the privacy concerns in biometric-based remote authentication schemes. Our security model covers a number of practical privacy concerns such as identity privacy and transaction anonymity, which have not been formally considered in the literature. In addition, we propose a general biometric-based remote authentication scheme and prove its security in our security model

    Multiple Traits for People Identification

    Get PDF
    Present biometric systems mostly rely on a single physical or behavioral feature for either identification or verification. However, day to day use of single biometries in massive or uncontrolled scenarios still has several shortcomings. These can be due to complex or unstable hardware settings, to changing environmental conditions or even to immature software procedures: some classification problems are intrinsically hard to solve. Possible spoofing of single biometric features is an additional issue. Last but not least, some features may occasionally lack the requisite of universality. As a consequence, biometric systems based on a single feature often have poor reliability, especially in applications where high security is needed. Multimodal systems, i.e., systems that concurrently exploit multiple features, are a possible way to achieve improved effectiveness and reliability. There are several issues that must be addressed when designing such a system, including the choice of the set of biometric features, the normalization method, the integration schema and the fusion process, and the use of a measure of reliability for each subsystem on a single response basis. This chapter describes the state of the art regarding such issues and sketches some suggestions for future work

    Analytic Reconstruction of Transparent and Opaque Surfaces from Texture Images

    No full text

    Failure to Acquire

    No full text

    Capabilities of Biometrics for Authentication in Wireless Devices

    No full text

    Second-Level Partition for Estimating FAR Confidence Intervals in Biometric Systems

    No full text
    13th International Conference on Computer Analysis of Images and Patterns, CAIP 2009, Munster, 2-4 September 2009Most biometric authentication algorithms make use of a similarity score that defines how similar two templates are according to a threshold and the accuracy of the results are expressed in terms of a False Reject Rate (FRR) or False Accept Rate (FAR) that is estimated using the training data set. A confidence interval is assigned to any claim of accuracy with 90% being commonly assumed for biometric-based authentication systems. However, these confidence intervals may not be as accurate as is presumed. In this paper, we report the results of experiments measuring the performance of the widely-used subset bootstrap approach to estimating the confidence interval of FAR. We find that the coverage of the FAR confidence intervals estimated by the subset bootstrap approach is reduced by the dependence between two similarities when they come from two individual pairs shared with a common individual. This is because subset bootstrap requires the independence of different subsets. To deal with this, we present a second-level partition to the similarity score set between different individuals, producing what we call a subset false accept rate (SFAR) bootstrap estimation. The experimental results show that the proposed procedures greatly increase the coverage of the FAR confidence intervals.Department of Computin

    Can Chimeric Persons Be Used in Multimodal Biometric Authentication Experiments

    Get PDF
    Abstract. Combining multiple information sources, typically from several data streams is a very promising approach, both in experiments and to some extents in various real-life applications. A system that uses more than one behavioral and physiological characteristics to verify whether a person is who he/she claims to be is called a multimodal biometric authentication system. Due to lack of large true multimodal biometric datasets, the biometric trait of a user from a database is often combined with another different biometric trait of yet another user, thus creating a so-called a chimeric user. In the literature, this practice is justified based on the fact that the underlying biometric traits to be combined are assumed to be independent of each other given the user. To the best of our knowledge, there is no literature that approves or disapproves such practice. We study this topic from two aspects: 1) by clarifying the mentioned independence assumption and 2) by constructing a pool of chimeric users from a pool of true modality matched users (or simply “true users”) taken from a bimodal database, such that the performance variability due to chimeric user can be compared with that due to true users. The experimental results suggest that for a large proportion of the experiments, such practice is indeed questionable.

    Histogram equalization in SVM multimodal person verification

    No full text
    Comunicació presentada a la International Conference on Biometrics (ICB) celebrada a Seoul (Korea) els dies 27 a 29 d'agost de 2007.It has been shown that prosody helps to improve voice spectrum based speaker recognition systems. Therefore, prosodic features can also be used in multimodal person verification in order to achieve better results. In this paper, a multimodal recognition system based on facial and vocal tract spectral features is improved by adding prosodic information. Matcher weighting method and support vector machines have been used as fusion techniques, and histogram equalization has been applied before SVM fusion as a normalization technique. The results show that the performance of a SVM multimodal verification system can be improved by using histogram equalization, especially when the equalization is applied to those scores giving the highest EER values
    corecore